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Increase in chaotic motions of atoms in a large-scale self-organized motion
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The macroscopic flow transition between heat conduction and convection in the two-dimensional Rayleigh-
Benard system is simulated using the molecular-dynamics method. The heat conduction state, in which mo-
tions of atoms are random and a large-scale flow does not appear, is established when the temperature
difference between the top and bottom walls is small. It is shown, when the temperature difference is large, that
macroscopic convection rolls appear and the trajectories of atoms are along the rolls. The degree of the chaotic
motions of atoms is observed in terms of the Lyapunov exponent. In the heat conduction state, the Lyapunov
exponent is shown to increase with the average temperature and the temperature difference. It is found that the
Lyapunov exponent depends not only on the temperatures but also on the macroscopic flow velocity when the
flow field shows the convecting state. The chaotic motions of atoms are shown to increase in the large-scale
self-organized motion.S1063-651X96)06508-1

PACS numbe(s): 47.20.Bp, 47.27.Te, 05.45b, 05.70.Ln

I. INTRODUCTION flow fields were not discussed. Posch, Hoover, and Kum
studied the RB problem using the smooth-particle applied
The Rayleigh-Beard (RB) system, in which a fluid is mechanic¥SPAM), which is a grid-free particle method for
contained between two horizontal parallel walls and the botsolving the partial differential equations of fluid or solid me-
tom wall is kept at a higher temperature than the top wall, ischanics[15,16. The good agreement between the smooth-
one of the representative nonequilibrium hydrodynamic sysparticle and the Navier-Stokes results was obtained and
tems. In the RB system, a heat conduction state is establish&PAM was shown to be an interesting bridge between con-
when the temperature difference between the top and bottotmuum mechanics and molecular dynamitd].
walls is smaller than a critical value, while convection rolls  Besides the RB convection, the MD method has been ap-
appear due to gravitational forces when the temperature diplied to various types of macroscopic flow problems.
ference exceeds the critical value. Meiburg[18] simulated the vortex shedding past an inclined
Convection in the RB system has been extensively studietlat plate. The flow past a circular obstacle was simulated by
both experimentally and numerically. These studies were reRapaport and Clemenfil9] and Rapaporf20]. A channel
viewed by Ahlerd 1] and Cross and Hohenb€ig). In recent  flow was simulated by Hannon, Lie, and Clemdi] and
years, RB convection has been studied at the molecular levéhe MD results were compared with analytical results. The
using the direct simulation Monte Carl®SMC) method simulation of shock waves in fluids was performed by Holian
and the molecular-dynamid¢®D) method in order to study [22]. The slip length in dilute gases was studied by Bhatta-
the microscopic origin of the macroscopic flow phenomenacharya and Li¢23,24] and Morris, Hannon, and Gardias).
The convection rolls were simulated using the DSMCIt was shown that not only the RB convection but also vari-
method by Garcig3] and Stefanov and Cercignddi]. Gar-  ous macroscopic flow phenomena could be simulated quali-
cia and Penland5] compared velocity distributions in the tatively and quantitatively using the MD method. Koplik,
convection rolls with the numerical solution of the Navier- Banavar, and Willemse[26,27 simulated the contact line
Stokes equations. The transition between conduction anseparating two immiscible fluids. The molecular structure of
convection was shown by Watanabe, Kaburaki, and wall was taken into account and the no-slip condition of a
Yokokawa using the DSMC methd6]. The spatial correla- macroscopic flow at the wall was discussed. Fluid interfaces
tions of temperature fluctuations were shown to grow in theand free surfaces were studied by Koplik and Banavar
transition between heat conduction and convecfifin The  [28,29. The microscopic motions and trajectories of atoms
DSMC method has also been applied to the simulation ofvere discussed in these MD studies as well as the macro-
various types of macroscopic flow phenomena as well as RBcopic flow phenomena. The microscopic flow structure of
convection 8]. The RB convection was also simulated usingthe transition between heat conduction and convection, how-
the MD method by Mareschal and Kestemd8t10] and ever, was not studied.
Rapaport[11]. Mareschalet al. [12], Puhl, Mansour, and In order to study irreversible nonequilibrium steady states,
Mareschal13], and Given and ClementiL4] compared the microscopic flow structures were studied using the MD
field variables in the convection rolls obtained by the MD method. A shear flow at constant internal energy was simu-
method with the results by the hydrodynamic calculationslated by Evang30] and a heat flow with the two boundary
Although the macroscopic flow phenomena in the RB systennegions thermostatted at different temperatures was discussed
were simulated in these studies qualitatively and quantitaby Holian, Hoover and Posdi31] and Hoovel 32]. The full
tively using the particle simulation technique, the micro-spectra of Lyapunov exponents for particle systems under an
scopic motions of atoms or molecules in the macroscopiexternal force field were measured by Posch and Hoover
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[33]. Posch and Hoovdi34] also studied Lyapunov spectra on the Boussinesq approximati¢87]. The wavelength of
for two- and three-dimensional fluids and solids. The sizehe perturbation at the onset of convection is about 2 and
dependence of Lyapunov spectra was discussed by Hoovénus the aspect ratio of the simulation region is set equal to
and Posch35,36. Although macroscopic irreversible non- this value[6]. The simulation particles are equally spaced in
equilibrium flows with reversible equations of motion were horizontal and vertical directions initially. The temperature
studied in these studies, the macroscopic flow transition oof the top wall is kept constant at 120 K throughout the
instability was not discussed. simulation and that of the bottom wall is also a constant, but
In this paper, the MD method is applied to simulate theranges from 120 to 600 K. The initial temperature distribu-
macroscopic flow transition between heat conduction andion is linear from the bottom to the top wall and the velocity
convection in the two-dimensional RB system. It is showncomponents of the particles are sampled from the Maxwell-
that one nonequilibrium steady stdteeat conductionis ob-  ian distribution corresponding to the temperature. The basic
tained when the temperature difference between the top arefjuationqg1)—(3) are nondimensionalized usimg, £, ;, and
bottom walls is small, while the other nonequilibrium steadyos and numerically integrated by the second-order Verlet
state(convection appears when the temperature difference ismethod[38]. Th time unit characterizing particle motions is
large. In order to study the relationship between the macror={(mo?)/(48¢ | ;)}*>=3.1x 10 '3 sec and the simulation
scopic flow fields and the microscopic motions of atoms, theaime step is set equal to 0.65The simulation region is
degree of the chaotic motions of atoms is discussed in termdivided into 40<20 sampling cells, in which macroscopic
of the Lyapunov exponent, which is obtained from theflow variables such as flow velocities are calculated. A flow
growth rate of the separation distance between two trajectdield is obtained by an average of samples during a simula-
ries in the phase space. It is found that the chaotic motions afon period of 2008 (40 000 simulation time steps
atoms are increased in the macroscopic convecting state, For simplicity, the microscopic structure of the wall sur-
which is a large-scale self-organized ordered motion of atrounding the simulation region is not simulated. The diffuse

oms. reflection boundary condition, in which a reflected particle
has velocity components randomly sampled from the Max-

II. MD SIMULATION wellian distribution corresponding to the surface tempera-
OF THE RAYLEIGH-BE NARD SYSTEM ture, is assumed at the top and bottom walls. The specular

) . o . reflection boundary condition, in which the perpendicular ve-

The RB conduction-convection system is simulated usingocity component of the incident particle is reversed and the
the MD method. In this method, the motions of atoms oriangential velocity component is unchanged, is assumed at
molecules are simulated by integrating Newton’s equationgnhe sidewalls. The gravitational acceleration is chosen to be a

of motion hypothetical value so as to minimize density variatiphs):
& B 1,2,... N (1) keAT
—=—, i=12,...
dtz m ) 169 31N _ B
i 9= L (4)

y
wherer; andm; are the spatial position and the masg tbf

particle, respectivelyF; is the force acting onth particle,  where AT and L, are the temperature difference and the
and N is the number of particles in the simulation region. distance between the top and bottom walls, respectively. The
Each pair of particles is assumed to interact through gravitational acceleration given by E(f) is also obtained

Lennard-Jones potential from the energy balance so that the average increase in ki-
12 6 netic energy of a particle at the bottom wall is sufficient to
_ g g bring it to the top of the systerf®,14]. The gravitational
<r<3.00)=4 —| == 2 o . ’ .
PLo0<r<3.00) 8“{( r) ( r) J @ acceleration is added to the right-hand side of @g}.

where the parametets ; and o provide the scales of energy
and distance, respectively, ands the distance between two 1. MACROSCOPIC FLOW FIELD
particles. The force acting dith particle is the sum of forces

- In this section the macroscopic flow filed obtained by the
from other particles

MD method is discussed. Typical transient flow fields are
N shown in Fig. 1 for a convection state. The bottom wall
_ . - C temperature is 600 K in this case. The velocity fields are in
i 121 Vidudrig), J#L @ the left column and the corresponding temperature fields are
in the right. The velocity and temperature fields in the top
We assume argon atoms for simulation particlesrow are the average flow fields during the first 26Q@riod
m=6.63x 10 26 kg, 0=3.4x10 m, ande ;/kg=120 K,  (from 1 to 40 000 time stepsthose in the second row are
wherekg is the Boltzmann constant. The number of simula-obtained during the second 200@eriod (from 40 001 to
tion particles is 7200. 80 000 time stepsand so on. It is seen in the velocity fields
The simulation region is a two-dimensional rectangle,that relatively large flows appear first at around the midel-
which is 6.48< 108 m in width and 3.2k 10" 8m in height,  evation. This is also shown in the transient flow fields ob-
with an aspect ratio of about 2. The onset of convection fotained by the DSMC methol®].
the RB system is predicted from the linear stability analysis One of the important parameters characterizing the RB
of the macroscopic hydrodynamic equations basedystem is the Rayleigh numbE37], which is defined by
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FIG. 2. Maximum flow velocity vs the parameter
e=(R—R.)/R., where the critical Rayleigh numbeR{) is deter-
mined from a fit ofe2. The data points @) show a long-time
average in the steady state and the error bars indicate the range of
data distributions.

)

whereR; is the critical Rayleigh number. The critical Ray-
leigh number is defined above which convection states ap-
pear and is obtained ah{T/T*)2=0.95 in our simulation.
The theoretical value of the critical Rayleigh number for our
system is about 1708 from the linear stability analy&§ig]
and the value of 4 T/T*)? corresponding to the theoretical

. . ) ) critical Rayleigh number is calculated to be about 1.17 from
FIG. 1. Typical transient flow fields for a convective state. The

. ) _“EQq. (6) for our simulation conditions. As the simple bound-
bottom wall temperature is 600 K. Velocity and temperature fields s . . .
obtained by sampling during the 208@eriod (40 000 time steps ary conditions are used in our simulation, the observed value

are in the left and right columns, respectively. of (AT/T*)?=O.95 is used in the following so that the onset
of convection corresponds 0=0.
In Fig. 2 the maximum flow velocity/ . iS normalized
_ OKATQLS by the reference velocity defined as the average thermal
R= vk (5) speed for the average temperature in the system
v* =(8kgT*)¥%(mm)¥2 In the region near the onset of
convection, a convecting flow velocity is shown to grow as

wherea, v, andk are the volume expansion coefficient, the 2 from the perturbation theory for the hydrodynamic equa-
kinematic viscosity, and the thermal diffusivity, respectively. tions[41]. In Fig. 2 a fit ofe ¥2 to the MD data is also shown.

It is well known in thg RB system that convec.:tlion rolls ap- the fitting coefficient ofs¥2 is chosen to be 0.1 in Fig. 2.
pear when the Rayleigh number exceeds a critical value. Fofhe microscopic MD results are found to agree well with the
a dense gas, the transport coefficients are given as a f,unCt'Qﬂacroscopic hydrodynamic theory. In Fig. 2 the maximum
of the density and temperatuf@9,40 and the Rayleigh o\ velocity is not zero in the heat conduction state
number is obtained by (¢<0). The MD data in this region show almost the same
velocity and do not depend on the parameieiThese non-
AT) 2 zero velocities are thus due to the statistical simulation con-
R= R'(p*)L§<T—*) : (6)  ditions such as the number of atoms and samplings.

The midelevation temperatures in the steady states are
shown in Fig. 3 as a function af. The temperatures near the
based on the Enskog theory, where andT* are the aver- sidewall and at the center of the simulation region are almost
age density and temperature in the system, respectively, arlde same as the average temperature when the Rayleigh num-
R’(p*) is the density-dependent part of the Rayleigh num-ber is smaller than the critical value €0). It is thus found
ber. that the isothermal contours are parallel to the top and bot-

After stable flow fields are established, the maximum flowtom walls and the heat conduction state is established in the
velocity is shown in Fig. 2 against a parameterwhich is  system. It is noted that the distribution of the data is rela-
defined by tively large fore <0 since the temperatures are normalized
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FIG. 3. Midelevation temperature in the steady state as a func-
tion of . The temperatures near the side w@tge and at the
center(centej are shown along with the horizontal averdgwer-

age.
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The separation distance is defined by

by the temperature difference between the top and bottom
walls and the temperature difference is relatively small for
€<0. A bifurcation between conduction and convection is
clearly seen at around the critical Rayleigh numbe& Q).
When the Rayleigh number is larger than the critical value
(e>0), the isothermal contours are not parallel to the top
and bottom walls and correspond to the velocity fields as
shown in Fig. 1. A similar temperature bifurcation at around

d(t)=

N 2
2 2 el 0= (07

172
+[Qi’,j(t)_qi,j(t)]2}) ,

FIG. 4. Typical trajectories of atoms in the physical plane over
0.12x 1P time steps (6006) in the steady state of the macroscopic
flow field.

®

the critical Rayleigh number was shown using the DSMCyherep andq denote the momentum and the position of the
method[6]. The MD method performed here is thus con- atom in the original system, respectively, andandq’ are
firmed to qualitatively reproduce the conduction and convecyygse in the shifted system. The subscijpindicates the

tion states in the RB system.

direction in the physical plane. After a certain time period

At, the growth rate of the separation distance is obtained by

IV. MICROSCOPIC MOTIONS OF ATOMS

d(At)/d(0). A typical growth rate is shown in Fig. 5 as a

) ) ) ) function of At. The value ofe is 0.053 in this case. It is
In this section the relationship between the macroscopignown in Fig. 5 that the growth rate increases exponentially
flow phenomena and the microscopic motions of atoms arg;ith time. The separation distance in the phase space is

discussed. Typical trajectories of atoms in the physical plane
are shown in Fig. 4, where positions of atoms are normalized
by the height [,) and the width [,) of the simulation
region. These trajectories are observed over AP time
steps (6000) in the steady state of the macroscopic flow
field. It is shown, when the macroscopic flow field is con-
vective (e=0.871), that the atom is moving along the con-
vection rolls. In the MD method, Eq$l)—(3) are determin-
istically solved and the macroscopic flow fields are obtained
by sampling the microscopic motions of atoms. The trajec-
tories of atoms are thus along the macroscopic flows. When
the flow field is conductived = —0.532), on the other hand,
the trajectory seems to be random even if it may move along
small-scale local flows.

A randomness of the motion of atoms is measured in
terms of the growth rate of a separation distance between two
trajectories in the phase spdée], which is composed of the
position and the momentum of N atoms. At a certain time
step during the MD simulation, the position of a certain atom

In[d(A/d(0)]

15.0 T T T
L &
w0
OMD P /OOOOCD
— — - linear fitting O/QO
10.0 | o -
OOO
OQ
o
5.0 O§O -
0.0 ﬁ?pﬂf@ ]
7
5.0 ' ' '
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in the phase space is slightly shifted as the initial condition  FIG. 5. Typical growth rate of the separation distance between
for the calculation of the growth rate. The MD simulations two trajectories in the phase space for 0.053. A linear fit is also

for the shifted and the original systems are then performedshown.
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known to separate exponentially when the system is in a 0.40 . . ,
stochastic conditiof42]. A chaotic motion of atoms is thus
indicated in Fig. 5.

The chaotic motions of atoms are measured in terms of
the Lyapunov exponerdl]. In our system, the Lyapunov
exponent is defined by

OMD
—— condugction + convection
— — - conduction alone

0.35

. 1 n dk(At) < 0.30
A= Ilim m kgo In dk(O) y (9)

n—o

wheren denotes the number of samplings. The procedure for 0.25 |

obtaining the growth rate is repeated until the Lyapunov ex-
ponent defined by Eq9) is sufficiently converged. This is
an approximation of a more accurate method for the calcu- 0.20 05 0.0 05 1.0
lation of the Lyapunov exponen{83,34. The time period is €
set equal to 200 time steps for all cases in our simulation.

The Lyapun.ov e>_(ponent IS Optamed from the growth rate FIG. 6. Lyapunov exponents as a functioneofA fit of Eq. (12)
of the separation distance as given by ). We assume .

- - . is also shown.

that the growth rate is dominated by the average relative
speed of atoms in the physical space. As the average relativeis determined first as 0.228 from the MD datasat — 1,
speed of atoms is proportional to the average speed of atomghere the system is in the equilibrium state witfi=0. The
in an equilibrium state, the growth rate in our system is asconstantc depends on the simulation conditions such as the

sumed to be given by number of atoms and samplings. The constaig then de-
termined as 0.003 so as to obtain the good agreement be-
d.(At) tween Eq.(12) and the MD data in the heat conduction state
d,(0) v, (10) (—1<e<0). The magnitude of the speed induced by grav-

ity is the order ofgAt, whereg is given by Eq.(4) andAt is
wherev is the average speed of atoms in the system. Théhe time period for the calculation of the Lyapunov expo-
average speed of atoms in the system, on the long-time apent. This term is estimated to be about 08TL(T*)*?
erage, is expressed as the sum of the average thermal spdEm the simulation condition and thus the order of magni-
for the average temperature in the system, the speed induc&¢fe of the constar is found to be in a reasonable range.

by gravity, and the speed due to macroscopic convectionThe last constarth is determined as 0.04 so as to obtain the

The average thermal speed for the average temperature in t§8°d agreement between Eq2) and the MD data in the

- i V20 e :
system is unity in the nondimensional form. The speed inONvection stated>0). The coefficient ok in Fig. 2 is

duced by gravity is proportional tAT/(T*)'2, since the ]9.1 3ntd Lhe.order of melljgljnitude of the constants also
gravitational acceleration is proportional 40T as given by ound fo be In a reasonavie range.

Eq. (4) in our simulation and the reference velocity is pro- firs-trgi degeeg(t)n(g tZ(r)r?wiui(r;]tlt%rg I;Vrh'gh ;eﬁ?rl]%ilgéeg( g;n?s the
portional to (T*)Y2. The atomic speed due to macroscopic gep "

convection is proportional to¥2 for s>0 as shown in Fig. shown in Fig. 6 by the broken line, while the solid line is

5 The average speed of atoms is thus given b obtained using all the terms. It is shown in Fig. 6 that the
' ge sp 9 y Lyapunov exponent is well represented by the conduction

L AT part in Eq.(12) when the macroscopic flow field is conduc-
U“l‘f—aw-i-bsllz, (1)  tive (¢<0). The conduction part, however, is not sufficient
(T*) for the Lyapunov exponent when the macroscopic flow field

wherea andb are constants. The first and second terms orl> convection €>0). It is known, when the self-organized

the right-hand side of the above relation indicate the effect 0p10t|0n_cafllled ?!S'Is&pa}[trl]v? structl:re flstr?e\/;lopedl in the mac-
conduction in the macroscopic flow field, while the third roscopic Tiow Tield, that a part ot the thermal energy 15

term indicates that of macroscopic convection, Thechanged into kinetic enerdy3]. The increase in kinetic en-
Lyapunov exponent is expressed by ergy in the macroscopic flow field corresponds to the in-

crease in microscopic motions of atoms. The chaotic motions

AT of atoms are thus found to increase when the macroscopic
A=In 1+awﬁ+bsl’2 +c, (120  flow field is convective, which is a large-scale self-organized

ordered motion of atoms. Although there may be other fit-

tings to the MD data shown in Fig. 6, the agreement between
the MD simulation and Eq.12) is fairly good. Our assump-
tion for the growth rate and the Lyapunov exponent is thus
found to be appropriate.

wherec is a constant.

The Lyapunov exponents are shown in Fig. 6 as a func
tion of . In Fig. 6 the Lyapunov exponents obtained by the
MD simulation using Eqs(8) and(9) are shown along with
those obtained by a fit of E¢12) to the MD data. Equation
(12) has three constants, each of which corresponds to a
different thermodynamic state of the system: heat conduc- In this study we have simulated the macroscopic flow
tion, convection, and equilibrium. In Eq12), the constant transition between heat conduction and convection in the RB

V. SUMMARY
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system using the MD method, which is a microscopic simutemperatures but also on the macroscopic flow velocity in the
lation technique. By changing the temperature difference beconvection state. The chaotic motions of atoms were shown
tween the top and bottom walls, we could simulate the macto increase in the large-scale self-organized ordered motion
roscopic hydrodynamic phenomena in the RB system fronof atoms. It is of great concern whether the ordered motion
heat conduction to convection. The large-scale flow was notesults in the randomness of the microscopic motions or the
observed and the motions of atoms were random in the hea&tcrease in the chaotic motions of atoms results in the self-
conduction state, while the large-scale self-organized motioorganized ordered motion. Our results demonstrate that the
of atoms appeared in the convection state. In order to studsnicroscopic motions of atoms play an important role in a
the relationship between the macroscopic flow fields and thenacroscopic flow transition or instability and the MD
microscopic motions of atoms, the degree of the chaotic momethod is shown to be a valuable tool for studying the mi-

tions of atoms was observed in terms of the Lyapunov expoeroscopic origin of macroscopic flow phenomena.
nent, which was obtained from the growth rate of the sepa-

ration distance between two trajectories in the phase space.
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