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The macroscopic flow transition between heat conduction and convection in the two-dimensional Rayleigh-
Bénard system is simulated using the molecular-dynamics method. The heat conduction state, in which mo-
tions of atoms are random and a large-scale flow does not appear, is established when the temperature
difference between the top and bottom walls is small. It is shown, when the temperature difference is large, that
macroscopic convection rolls appear and the trajectories of atoms are along the rolls. The degree of the chaotic
motions of atoms is observed in terms of the Lyapunov exponent. In the heat conduction state, the Lyapunov
exponent is shown to increase with the average temperature and the temperature difference. It is found that the
Lyapunov exponent depends not only on the temperatures but also on the macroscopic flow velocity when the
flow field shows the convecting state. The chaotic motions of atoms are shown to increase in the large-scale
self-organized motion.@S1063-651X~96!06508-7#

PACS number~s!: 47.20.Bp, 47.27.Te, 05.45.1b, 05.70.Ln

I. INTRODUCTION

The Rayleigh-Be´nard ~RB! system, in which a fluid is
contained between two horizontal parallel walls and the bot-
tom wall is kept at a higher temperature than the top wall, is
one of the representative nonequilibrium hydrodynamic sys-
tems. In the RB system, a heat conduction state is established
when the temperature difference between the top and bottom
walls is smaller than a critical value, while convection rolls
appear due to gravitational forces when the temperature dif-
ference exceeds the critical value.

Convection in the RB system has been extensively studied
both experimentally and numerically. These studies were re-
viewed by Ahlers@1# and Cross and Hohenberg@2#. In recent
years, RB convection has been studied at the molecular level
using the direct simulation Monte Carlo~DSMC! method
and the molecular-dynamics~MD! method in order to study
the microscopic origin of the macroscopic flow phenomena.
The convection rolls were simulated using the DSMC
method by Garcia@3# and Stefanov and Cercignani@4#. Gar-
cia and Penland@5# compared velocity distributions in the
convection rolls with the numerical solution of the Navier-
Stokes equations. The transition between conduction and
convection was shown by Watanabe, Kaburaki, and
Yokokawa using the DSMC method@6#. The spatial correla-
tions of temperature fluctuations were shown to grow in the
transition between heat conduction and convection@7#. The
DSMC method has also been applied to the simulation of
various types of macroscopic flow phenomena as well as RB
convection@8#. The RB convection was also simulated using
the MD method by Mareschal and Kestemont@9,10# and
Rapaport@11#. Mareschalet al. @12#, Puhl, Mansour, and
Mareschal@13#, and Given and Clementi@14# compared the
field variables in the convection rolls obtained by the MD
method with the results by the hydrodynamic calculations.
Although the macroscopic flow phenomena in the RB system
were simulated in these studies qualitatively and quantita-
tively using the particle simulation technique, the micro-
scopic motions of atoms or molecules in the macroscopic

flow fields were not discussed. Posch, Hoover, and Kum
studied the RB problem using the smooth-particle applied
mechanics~SPAM!, which is a grid-free particle method for
solving the partial differential equations of fluid or solid me-
chanics@15,16#. The good agreement between the smooth-
particle and the Navier-Stokes results was obtained and
SPAM was shown to be an interesting bridge between con-
tinuum mechanics and molecular dynamics@17#.

Besides the RB convection, the MD method has been ap-
plied to various types of macroscopic flow problems.
Meiburg @18# simulated the vortex shedding past an inclined
flat plate. The flow past a circular obstacle was simulated by
Rapaport and Clementi@19# and Rapaport@20#. A channel
flow was simulated by Hannon, Lie, and Clementi@21# and
the MD results were compared with analytical results. The
simulation of shock waves in fluids was performed by Holian
@22#. The slip length in dilute gases was studied by Bhatta-
charya and Lie@23,24# and Morris, Hannon, and Garcia@25#.
It was shown that not only the RB convection but also vari-
ous macroscopic flow phenomena could be simulated quali-
tatively and quantitatively using the MD method. Koplik,
Banavar, and Willemsen@26,27# simulated the contact line
separating two immiscible fluids. The molecular structure of
a wall was taken into account and the no-slip condition of a
macroscopic flow at the wall was discussed. Fluid interfaces
and free surfaces were studied by Koplik and Banavar
@28,29#. The microscopic motions and trajectories of atoms
were discussed in these MD studies as well as the macro-
scopic flow phenomena. The microscopic flow structure of
the transition between heat conduction and convection, how-
ever, was not studied.

In order to study irreversible nonequilibrium steady states,
microscopic flow structures were studied using the MD
method. A shear flow at constant internal energy was simu-
lated by Evans@30# and a heat flow with the two boundary
regions thermostatted at different temperatures was discussed
by Holian, Hoover and Posch@31# and Hoover@32#. The full
spectra of Lyapunov exponents for particle systems under an
external force field were measured by Posch and Hoover
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@33#. Posch and Hoover@34# also studied Lyapunov spectra
for two- and three-dimensional fluids and solids. The size
dependence of Lyapunov spectra was discussed by Hoover
and Posch@35,36#. Although macroscopic irreversible non-
equilibrium flows with reversible equations of motion were
studied in these studies, the macroscopic flow transition or
instability was not discussed.

In this paper, the MD method is applied to simulate the
macroscopic flow transition between heat conduction and
convection in the two-dimensional RB system. It is shown
that one nonequilibrium steady state~heat conduction! is ob-
tained when the temperature difference between the top and
bottom walls is small, while the other nonequilibrium steady
state~convection! appears when the temperature difference is
large. In order to study the relationship between the macro-
scopic flow fields and the microscopic motions of atoms, the
degree of the chaotic motions of atoms is discussed in terms
of the Lyapunov exponent, which is obtained from the
growth rate of the separation distance between two trajecto-
ries in the phase space. It is found that the chaotic motions of
atoms are increased in the macroscopic convecting state,
which is a large-scale self-organized ordered motion of at-
oms.

II. MD SIMULATION
OF THE RAYLEIGH-BE´NARD SYSTEM

The RB conduction-convection system is simulated using
the MD method. In this method, the motions of atoms or
molecules are simulated by integrating Newton’s equations
of motion

d2r i
dt2

5
Fi
mi

, i51,2, . . . ,N, ~1!

wherer i andmi are the spatial position and the mass ofi th
particle, respectively,Fi is the force acting oni th particle,
andN is the number of particles in the simulation region.
Each pair of particles is assumed to interact through a
Lennard-Jones potential

fLJ~0,r,3.0s!54«LJH S s
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where the parameters«LJ ands provide the scales of energy
and distance, respectively, andr is the distance between two
particles. The force acting oni th particle is the sum of forces
from other particles

Fi52(
j51

N

¹ifLJ~r i j !, j5” i . ~3!

We assume argon atoms for simulation particles:
m56.63310226 kg, s53.4310210 m, and«LJ /kB5120 K,
wherekB is the Boltzmann constant. The number of simula-
tion particles is 7200.

The simulation region is a two-dimensional rectangle,
which is 6.4831028 m in width and 3.2131028 m in height,
with an aspect ratio of about 2. The onset of convection for
the RB system is predicted from the linear stability analysis
of the macroscopic hydrodynamic equations based

on the Boussinesq approximation@37#. The wavelength of
the perturbation at the onset of convection is about 2 and
thus the aspect ratio of the simulation region is set equal to
this value@6#. The simulation particles are equally spaced in
horizontal and vertical directions initially. The temperature
of the top wall is kept constant at 120 K throughout the
simulation and that of the bottom wall is also a constant, but
ranges from 120 to 600 K. The initial temperature distribu-
tion is linear from the bottom to the top wall and the velocity
components of the particles are sampled from the Maxwell-
ian distribution corresponding to the temperature. The basic
equations~1!–~3! are nondimensionalized usingm, «LJ , and
s and numerically integrated by the second-order Verlet
method@38#. Th time unit characterizing particle motions is
t5$(ms2)/(48« LJ)%

1/253.1310213 sec and the simulation
time step is set equal to 0.05t. The simulation region is
divided into 40320 sampling cells, in which macroscopic
flow variables such as flow velocities are calculated. A flow
field is obtained by an average of samples during a simula-
tion period of 2000t ~40 000 simulation time steps!.

For simplicity, the microscopic structure of the wall sur-
rounding the simulation region is not simulated. The diffuse
reflection boundary condition, in which a reflected particle
has velocity components randomly sampled from the Max-
wellian distribution corresponding to the surface tempera-
ture, is assumed at the top and bottom walls. The specular
reflection boundary condition, in which the perpendicular ve-
locity component of the incident particle is reversed and the
tangential velocity component is unchanged, is assumed at
the sidewalls. The gravitational acceleration is chosen to be a
hypothetical value so as to minimize density variations@15#:

g5
kBDT

mLy
, ~4!

where DT and Ly are the temperature difference and the
distance between the top and bottom walls, respectively. The
gravitational acceleration given by Eq.~4! is also obtained
from the energy balance so that the average increase in ki-
netic energy of a particle at the bottom wall is sufficient to
bring it to the top of the system@9,14#. The gravitational
acceleration is added to the right-hand side of Eq.~1!.

III. MACROSCOPIC FLOW FIELD

In this section the macroscopic flow filed obtained by the
MD method is discussed. Typical transient flow fields are
shown in Fig. 1 for a convection state. The bottom wall
temperature is 600 K in this case. The velocity fields are in
the left column and the corresponding temperature fields are
in the right. The velocity and temperature fields in the top
row are the average flow fields during the first 2000t period
~from 1 to 40 000 time steps!, those in the second row are
obtained during the second 2000t period ~from 40 001 to
80 000 time steps!, and so on. It is seen in the velocity fields
that relatively large flows appear first at around the midel-
evation. This is also shown in the transient flow fields ob-
tained by the DSMC method@6#.

One of the important parameters characterizing the RB
system is the Rayleigh number@37#, which is defined by
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wherea, n, andk are the volume expansion coefficient, the
kinematic viscosity, and the thermal diffusivity, respectively.
It is well known in the RB system that convection rolls ap-
pear when the Rayleigh number exceeds a critical value. For
a dense gas, the transport coefficients are given as a function
of the density and temperature@39,40# and the Rayleigh
number is obtained by

R5R8~r* !Ly
2S DT

T* D 2, ~6!

based on the Enskog theory, wherer* andT* are the aver-
age density and temperature in the system, respectively, and
R8(r* ) is the density-dependent part of the Rayleigh num-
ber.

After stable flow fields are established, the maximum flow
velocity is shown in Fig. 2 against a parameter«, which is
defined by

«5
R2Rc

Rc
, ~7!

whereRc is the critical Rayleigh number. The critical Ray-
leigh number is defined above which convection states ap-
pear and is obtained at (DT/T* )250.95 in our simulation.
The theoretical value of the critical Rayleigh number for our
system is about 1708 from the linear stability analysis@37#
and the value of (DT/T* )2 corresponding to the theoretical
critical Rayleigh number is calculated to be about 1.17 from
Eq. ~6! for our simulation conditions. As the simple bound-
ary conditions are used in our simulation, the observed value
of (DT/T* )250.95 is used in the following so that the onset
of convection corresponds to«50.

In Fig. 2 the maximum flow velocityVmax is normalized
by the reference velocity defined as the average thermal
speed for the average temperature in the system
v*5(8kBT* )

1/2/(mp)1/2. In the region near the onset of
convection, a convecting flow velocity is shown to grow as
«1/2 from the perturbation theory for the hydrodynamic equa-
tions@41#. In Fig. 2 a fit of«1/2 to the MD data is also shown.
The fitting coefficient of«1/2 is chosen to be 0.1 in Fig. 2.
The microscopic MD results are found to agree well with the
macroscopic hydrodynamic theory. In Fig. 2 the maximum
flow velocity is not zero in the heat conduction state
(«,0). The MD data in this region show almost the same
velocity and do not depend on the parameter«. These non-
zero velocities are thus due to the statistical simulation con-
ditions such as the number of atoms and samplings.

The midelevation temperatures in the steady states are
shown in Fig. 3 as a function of«. The temperatures near the
sidewall and at the center of the simulation region are almost
the same as the average temperature when the Rayleigh num-
ber is smaller than the critical value («,0). It is thus found
that the isothermal contours are parallel to the top and bot-
tom walls and the heat conduction state is established in the
system. It is noted that the distribution of the data is rela-
tively large for«,0 since the temperatures are normalized

FIG. 1. Typical transient flow fields for a convective state. The
bottom wall temperature is 600 K. Velocity and temperature fields
obtained by sampling during the 2000t period ~40 000 time steps!
are in the left and right columns, respectively.

FIG. 2. Maximum flow velocity vs the parameter
«5(R2Rc)/Rc , where the critical Rayleigh number (Rc) is deter-
mined from a fit of«1/2. The data points (s) show a long-time
average in the steady state and the error bars indicate the range of
data distributions.

1506 54TADASHI WATANABE AND HIDEO KABURAKI



by the temperature difference between the top and bottom
walls and the temperature difference is relatively small for
«,0. A bifurcation between conduction and convection is
clearly seen at around the critical Rayleigh number («50).
When the Rayleigh number is larger than the critical value
(«.0), the isothermal contours are not parallel to the top
and bottom walls and correspond to the velocity fields as
shown in Fig. 1. A similar temperature bifurcation at around
the critical Rayleigh number was shown using the DSMC
method @6#. The MD method performed here is thus con-
firmed to qualitatively reproduce the conduction and convec-
tion states in the RB system.

IV. MICROSCOPIC MOTIONS OF ATOMS

In this section the relationship between the macroscopic
flow phenomena and the microscopic motions of atoms are
discussed. Typical trajectories of atoms in the physical plane
are shown in Fig. 4, where positions of atoms are normalized
by the height (Ly) and the width (Lx) of the simulation
region. These trajectories are observed over 0.123106 time
steps (6000t) in the steady state of the macroscopic flow
field. It is shown, when the macroscopic flow field is con-
vective («50.871), that the atom is moving along the con-
vection rolls. In the MD method, Eqs.~1!–~3! are determin-
istically solved and the macroscopic flow fields are obtained
by sampling the microscopic motions of atoms. The trajec-
tories of atoms are thus along the macroscopic flows. When
the flow field is conductive («520.532), on the other hand,
the trajectory seems to be random even if it may move along
small-scale local flows.

A randomness of the motion of atoms is measured in
terms of the growth rate of a separation distance between two
trajectories in the phase space@42#, which is composed of the
position and the momentum of N atoms. At a certain time
step during the MD simulation, the position of a certain atom
in the phase space is slightly shifted as the initial condition
for the calculation of the growth rate. The MD simulations
for the shifted and the original systems are then performed.

The separation distance is defined by

d~ t !5S (
i51

N

(
j51

2

$@pi , j8 ~ t !2pi , j~ t !#
2

1@qi , j8 ~ t !2qi , j~ t !#
2% D 1/2, ~8!

wherep andq denote the momentum and the position of the
atom in the original system, respectively, andp8 andq8 are
those in the shifted system. The subscriptj indicates the
direction in the physical plane. After a certain time period
Dt, the growth rate of the separation distance is obtained by
d(Dt)/d(0). A typical growth rate is shown in Fig. 5 as a
function of Dt. The value of« is 0.053 in this case. It is
shown in Fig. 5 that the growth rate increases exponentially
with time. The separation distance in the phase space is

FIG. 3. Midelevation temperature in the steady state as a func-
tion of «. The temperatures near the side wall~edge! and at the
center~center! are shown along with the horizontal average~aver-
age!.

FIG. 4. Typical trajectories of atoms in the physical plane over
0.123106 time steps (6000t) in the steady state of the macroscopic
flow field.

FIG. 5. Typical growth rate of the separation distance between
two trajectories in the phase space for«50.053. A linear fit is also
shown.
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known to separate exponentially when the system is in a
stochastic condition@42#. A chaotic motion of atoms is thus
indicated in Fig. 5.

The chaotic motions of atoms are measured in terms of
the Lyapunov exponent@41#. In our system, the Lyapunov
exponent is defined by

l5 lim
n→`

1

nDt (
k50

n

ln
dk~Dt !

dk~0!
, ~9!

wheren denotes the number of samplings. The procedure for
obtaining the growth rate is repeated until the Lyapunov ex-
ponent defined by Eq.~9! is sufficiently converged. This is
an approximation of a more accurate method for the calcu-
lation of the Lyapunov exponents@33,34#. The time period is
set equal to 200 time steps for all cases in our simulation.

The Lyapunov exponent is obtained from the growth rate
of the separation distance as given by Eq.~9!. We assume
that the growth rate is dominated by the average relative
speed of atoms in the physical space. As the average relative
speed of atoms is proportional to the average speed of atoms
in an equilibrium state, the growth rate in our system is as-
sumed to be given by

dk~Dt !

dk~0!
} v̄, ~10!

where v̄ is the average speed of atoms in the system. The
average speed of atoms in the system, on the long-time av-
erage, is expressed as the sum of the average thermal speed
for the average temperature in the system, the speed induced
by gravity, and the speed due to macroscopic convection.
The average thermal speed for the average temperature in the
system is unity in the nondimensional form. The speed in-
duced by gravity is proportional toDT/(T* )1/2, since the
gravitational acceleration is proportional toDT as given by
Eq. ~4! in our simulation and the reference velocity is pro-
portional to (T* )1/2. The atomic speed due to macroscopic
convection is proportional to«1/2 for «.0 as shown in Fig.
2. The average speed of atoms is thus given by

v̄}11a
DT

~T* !1/2
1b«1/2, ~11!

wherea andb are constants. The first and second terms on
the right-hand side of the above relation indicate the effect of
conduction in the macroscopic flow field, while the third
term indicates that of macroscopic convection. The
Lyapunov exponent is expressed by

l5 lnS 11a
DT

~T* !1/2
1b«1/2D1c, ~12!

wherec is a constant.
The Lyapunov exponents are shown in Fig. 6 as a func-

tion of «. In Fig. 6 the Lyapunov exponents obtained by the
MD simulation using Eqs.~8! and~9! are shown along with
those obtained by a fit of Eq.~12! to the MD data. Equation
~12! has three constants, each of which corresponds to a
different thermodynamic state of the system: heat conduc-
tion, convection, and equilibrium. In Eq.~12!, the constant

c is determined first as 0.228 from the MD data at«521,
where the system is in the equilibrium state withDT50. The
constantc depends on the simulation conditions such as the
number of atoms and samplings. The constanta is then de-
termined as 0.003 so as to obtain the good agreement be-
tween Eq.~12! and the MD data in the heat conduction state
(21,«,0). The magnitude of the speed induced by grav-
ity is the order ofgDt, whereg is given by Eq.~4! andDt is
the time period for the calculation of the Lyapunov expo-
nent. This term is estimated to be about 0.001DT/(T* )1/2

from the simulation condition and thus the order of magni-
tude of the constanta is found to be in a reasonable range.
The last constantb is determined as 0.04 so as to obtain the
good agreement between Eq.~12! and the MD data in the
convection state («.0). The coefficient of«1/2 in Fig. 2 is
0.1 and the order of magnitude of the constantb is also
found to be in a reasonable range.

The effect of conduction, which is calculated from the
first and second terms in the large parentheses of Eq.~12!, is
shown in Fig. 6 by the broken line, while the solid line is
obtained using all the terms. It is shown in Fig. 6 that the
Lyapunov exponent is well represented by the conduction
part in Eq.~12! when the macroscopic flow field is conduc-
tive («,0). The conduction part, however, is not sufficient
for the Lyapunov exponent when the macroscopic flow field
is convection («.0). It is known, when the self-organized
motion called dissipative structure is developed in the mac-
roscopic flow field, that a part of the thermal energy is
changed into kinetic energy@43#. The increase in kinetic en-
ergy in the macroscopic flow field corresponds to the in-
crease in microscopic motions of atoms. The chaotic motions
of atoms are thus found to increase when the macroscopic
flow field is convective, which is a large-scale self-organized
ordered motion of atoms. Although there may be other fit-
tings to the MD data shown in Fig. 6, the agreement between
the MD simulation and Eq.~12! is fairly good. Our assump-
tion for the growth rate and the Lyapunov exponent is thus
found to be appropriate.

V. SUMMARY

In this study we have simulated the macroscopic flow
transition between heat conduction and convection in the RB

FIG. 6. Lyapunov exponents as a function of«. A fit of Eq. ~12!
is also shown.
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system using the MD method, which is a microscopic simu-
lation technique. By changing the temperature difference be-
tween the top and bottom walls, we could simulate the mac-
roscopic hydrodynamic phenomena in the RB system from
heat conduction to convection. The large-scale flow was not
observed and the motions of atoms were random in the heat
conduction state, while the large-scale self-organized motion
of atoms appeared in the convection state. In order to study
the relationship between the macroscopic flow fields and the
microscopic motions of atoms, the degree of the chaotic mo-
tions of atoms was observed in terms of the Lyapunov expo-
nent, which was obtained from the growth rate of the sepa-
ration distance between two trajectories in the phase space.
The Lyapunov exponent was shown to increase with the av-
erage temperature and the temperature difference when the
macroscopic flow field was conduction. It was found that the
Lyapunov exponent was increased depending not only on the

temperatures but also on the macroscopic flow velocity in the
convection state. The chaotic motions of atoms were shown
to increase in the large-scale self-organized ordered motion
of atoms. It is of great concern whether the ordered motion
results in the randomness of the microscopic motions or the
increase in the chaotic motions of atoms results in the self-
organized ordered motion. Our results demonstrate that the
microscopic motions of atoms play an important role in a
macroscopic flow transition or instability and the MD
method is shown to be a valuable tool for studying the mi-
croscopic origin of macroscopic flow phenomena.
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